
© 2003 National Instruments Corp. All rights reserved.

LabVIEW™, National Instruments™, NI™, NI Developer Zone™, and ni.com™ are trademarks of National Instruments
Corporation. Product and company names mentioned herein are trademarks or trade names of their respective
companies. For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your
software, the patents.txt file on your CD, or ni.com/patents.

June 2003
323603A-01

LabVIEW State Diagram Toolkit
User Guide

The LabVIEW State Diagram Toolkit assists in large scale application
development by providing a framework in which you can build state
machines in LabVIEW. Using the State Diagram Toolkit, you can create a
state diagram that reflects a complex decision-making algorithm while
LabVIEW simultaneously generates the block diagram code necessary to
implement the state machine.

This user guide contains an introduction to state machines and exercises
that help you become familiar with the State Diagram Toolkit. Throughout
the exercises, you will learn how to use the State Diagram Toolkit in
designing state machines.

Contents
Introduction to State Machines ... 2
Testing the Primality of a Number.. 3

Defining a Prime Number Algorithm .. 4
Testing the Numbers 1, 2, and 3 .. 4

Creating the Initial State Diagram .. 4
Creating New States ... 5
Creating Terminal States .. 6
Creating Additional Transitions ... 7
Exploring the Block Diagram... 8
Revisiting the Prime Number Algorithm.................................. 10
Initializing the Input n Case.. 10
Determining If n Is Equal to 1, 2, or 3...................................... 11
Indicating the Primality of a Number 13
Running the Prime Test VI ... 14
Reordering Transition Priorities ... 14

Testing Numbers Greater than 3 .. 15
Revisiting the Prime Number Algorithm.................................. 15
Modifying the State Diagram ... 16
Creating a Divisor d.. 17
Setting the Divisor Equal to 2... 18

™

ni.com

LabVIEW State Diagram Toolkit User Guide 2 ni.com

Dividing n by d..19
Increasing the Divisor by 1 ...20
Running the Prime Test VI..21

Calling a State Machine VI as a SubVI..23
Where to Go from Here ...23

Introduction to State Machines
A state machine is a system with unique states and transitions that govern
the execution flow of the system. In applications where distinguishable
states exist, you create a state diagram to graphically represent a state
machine. Within a state diagram, each state can lead to one or multiple
states or can end the process flow. Each state diagram relies on user input
or in-state calculations to determine the next state to execute. All
applications require an initial state, followed by transition states that
perform different actions. A terminal state is the final state executed and
performs clean up actions.

State diagrams are useful in simplifying the design process of applications
that use complex decision-making algorithms. In addition to visualizing the
flow of a complex decision-making algorithm, the state diagram is a
functional form of application planning. To create an effective state
diagram, you must know the various states of the application and how the
states relate to one another. By visualizing the various execution states of
an application, you improve the overall design of the application.

The State Diagram Toolkit provides a user interface that you can use to
design state diagrams. In the State Diagram Editor window, shown in
Figure 1, the ovals represent states in the system and the arrows represent
transitions between the states.

In Figure 1, the Input n state is the initial state and the Not Prime and
Prime states are terminal states. Depending on the value of n, the state
diagram determines if the number is either not prime or prime.

To determine which state executes after the Input n state, the state diagram
evaluates the value of n using the conditions specified by the three
transition arrows associated with the Input n state. If n is less than or equal
to 1, the number is not prime. If n is less than or equal to 3, but not equal
to 1, the number is prime. If the number is greater than 3, the three
states—set d = 2, n/d, and d = d + 1— execute to determine the primality
of a number.

© National Instruments Corporation 3 LabVIEW State Diagram Toolkit User Guide

Figure 1. State Diagram Editor Window

The exercises in this user guide will teach you how to create the state
diagram in Figure 1 and write a VI that determines the primality of a
number.

The State Diagram Toolkit contains two components—the State Diagram
Editor window and the automatically generated block diagram code. The
State Diagram Editor window provides a view of the execution flow of
the application, while the block diagram defines what action occurs in each
state and when each transition occurs.

Note In this document, a state diagram refers to the ovals and arrows in the State
Diagram Editor window. A state machine refers to the block diagram code that
implements the decision-making algorithm.

Refer to the Application Design Patterns: State Machines Application Note
for more information about state machines. This Application Note is
available on the NI Developer Zone at ni.com/zone.

Testing the Primality of a Number
The following exercises teach you how to develop a basic VI that tests the
primality of a number. Throughout each exercise, you will see illustrations
that provide information about the concepts associated with certain steps.

Refer to the examples\statediagram directory for the solution to these
exercises.

LabVIEW State Diagram Toolkit User Guide 4 ni.com

Defining a Prime Number Algorithm
A number n is prime if it is a positive integer greater than 1 and is divisible
by no other positive integers other than 1 and itself. The following
algorithm is just one of many ways for determining whether a number is
prime.

A user picks a number n.
If n = 1, the number is not prime. (quit)
If n = 2 or 3, the number is prime. (quit)
If n > 3, you must test whether the number is divisible only by the number
1 and itself.

Start by setting a divisor d equal to 2.
If n/d is an integer, n is not prime. (quit)
If n/d is not an integer, increase the divisor by 1 setting d = d + 1.
Test until d + 1 = n.
If d + 1 = n, the number n is prime. (quit)

Note From a performance perspective, this algorithm is not the most efficient method for
determining prime numbers. However, for the purposes of these exercises, this algorithm
provides a straightforward example of how to use the State Diagram Toolkit.

Testing the Numbers 1, 2, and 3
Using the State Diagram Editor window, you can create a state diagram
that reflects the logic described in the Defining a Prime Number Algorithm
section. On the block diagram, you then can configure the details of the
algorithm to create a VI that tests whether a number is prime.

In these exercises, you will create a VI that determines the primality of the
numbers 1, 2, and 3.

You can complete the exercises in approximately 45 minutes.

Creating the Initial State Diagram
Complete the following steps to launch the State Diagram Editor
window.

1. Display the block diagram and select the State Diagram VI, shown at
left, from the State Diagram Editor palette.

2. Move the cursor to the upper left corner of the block diagram. Place the
top left corner of the state diagram here.

Note You place the State Diagram VI on the block diagram similar to how you draw a
While Loop on the block diagram.

© National Instruments Corporation 5 LabVIEW State Diagram Toolkit User Guide

3. Click and drag the cursor diagonally so that the structure fills up the
block diagram.

Notice how the State Diagram Editor window, shown in Figure 1,
automatically opens. The window includes only an initial state, shown
at left, represented by a green oval. An initial state accepts inputs to the
state machine and is the first state to execute when you run the state
machine.

The initial state also has a transition arrow attached to it. Transition
arrows represent transitions between states and indicate which state
executes next when a certain condition is true.

4. On the front panel, place a numeric control.

5. Label the numeric control n.

Remember that the first step in the prime number algorithm is for
the user to pick a number n. This numeric control n corresponds to the
number a user inputs.

6. Change the representation of the control to a 32-bit signed
integer (I32).

7. Save this VI as Prime Test.vi.

Creating New States
The first step in creating this state diagram is to specify the basic logic.
By definition, the number 1 is not prime and the numbers 2 and 3 are the
smallest prime numbers. If the number is greater than 3, you must use the
prime test algorithm to continue testing the number. This definition
indicates that you need four states—an input state, a state that indicates you
need to keep testing, a not prime state, and a prime state.

Complete the following steps to build a state diagram that includes these
four states.

1. In the State Diagram Editor window, double-click the Init state and
change the label to Input n.

Notice how when you select this state, the border is pink. When you
select any object in the State Diagram Editor window, LabVIEW
outlines that object in pink.

2. You need to have a state that indicates when further testing is
necessary. To create a new state to indicate you need to keep testing
a number, click the New State button, shown at left.

Notice how a new state appears in the window. Unlike the initial state,
this state is yellow and represents a transition state. Transition states
are intermediate states that execute depending on certain conditions.

3. Change the label of the new state to Keep Testing, shown at left.

LabVIEW State Diagram Toolkit User Guide 6 ni.com

4. Move the Keep Testing state to the right of the Input n state.

Notice how the Keep Testing state has a default transition arrow.
Each new state you create has a default transition arrow. The default
transition arrow indicates the state that executes by default if no other
transition conditions are true. You cannot delete the default transition
arrow.

5. Click and drag the arrowhead of the default transition arrow of the
Input n state to connect the Input n state to the Keep Testing state.

Notice how when you select this arrow, the arrow is pink. When you
move the arrow, blue guide lines, shown at left, appear to help you
change the shape of the arrow. Drag the line point to configure the
shape of the arrow.

6. Create a new state labeled Not Prime.

7. Create a new state labeled Prime.

Tip When you click the New State button, LabVIEW places a new state directly under
the initial state. To place a new state anywhere on the State Diagram Editor window,
right-click a blank space and select New State from the shortcut menu.

Creating Terminal States
A number is not prime, prime, or requires more testing. These are final
decisions about a number that the VI makes when evaluating a number.
Complete the following steps to make the Keep Testing, Not Prime, and
Prime states terminal states.

1. In the State Diagram Editor window, arrange the four states so they
look like the states in Figure 2.

Figure 2. Arranging the States

© National Instruments Corporation 7 LabVIEW State Diagram Toolkit User Guide

2. Right-click the Not Prime state and select Make Terminal from the
shortcut menu.

Notice how the oval, shown at left, now changes to the color red.
The red oval represents a terminal state that has no transition arrows
leaving it.

A terminal state returns the outputs of the state machine and is the last
state to execute when you run the state machine. Terminal states
represent final decisions. The state machine stops after executing the
code in a terminal state.

3. Configure the Keep Testing state as a terminal state.

4. Configure the Prime state as a terminal state.

Creating Additional Transitions
Complete the following steps to create transitions that connect the Input n
and Not Prime states and the Input n and Prime states.

1. In the State Diagram Editor window, select the Input n state and
click the New Transition button, shown at left, to create a new
transition arrow.

Notice how a new transition arrow appears. LabVIEW automatically
attaches the head of the transition arrow to the cursor. When you use
the cursor to select another state, LabVIEW creates the transition from
one state to another.

2. Click the Not Prime state to create the transition from the Input n
state to the Not Prime state.

3. Double-click the transition arrow to change the label to n < = 1.

Tip You can click and drag the transition arrow labels to move them in the State Diagram
Editor window.

4. Create a new transition from the Input n state to the Prime state and
label it n < = 3.

The state diagram should look like the state diagram in Figure 3.

Figure 3. State Diagram for the Prime Test VI

LabVIEW State Diagram Toolkit User Guide 8 ni.com

5. Save the VI.

Keep the State Diagram Editor window open for use in later
exercises.

Note If you close the State Diagram Editor window, you can right-click the border of
the outer While Loop on the block diagram and select Edit State Diagram from the
shortcut menu to open the State Diagram Editor window.

Exploring the Block Diagram
Complete the following steps to examine the block diagram in greater
detail.

1. Display the block diagram.

Notice how the block diagram already contains code generated by the
State Diagram Toolkit. This automatically generated block diagram
code, shown in Figure 4, uses two While Loops and two Case
structures to represent the states and transitions in the State Diagram
Editor window.

When you click the New State button or the New Transition button,
the State Diagram Toolkit automatically updates the block diagram
code to reflect the states and transitions you added.

Figure 4. Block Diagram Code for the Initial State

© National Instruments Corporation 9 LabVIEW State Diagram Toolkit User Guide

The outer While Loop executes the block diagram code until the state
machine executes a terminal state. The outer Case structure contains
the block diagram code to run for each state on the state diagram.

2. Scroll through the cases in the outer Case structure.

Notice how each case in the outer Case structure corresponds to a state
in the State Diagram Editor window. There is one case for each state
on the state diagram as well as a _Quit_ case.

By default, when you create a new state diagram, the outer Case
structure contains two cases, Init and _Quit_. The Init case, which
you renamed Input n in the Creating New States section, corresponds
to the initial state on the state diagram and is the first case to execute.

3. Select the Not Prime case in the outer Case structure.

Notice that all cases corresponding to terminal states contain only one
case, the default case, in the inner Case structure. By default, this
default case automatically calls the _Quit_ case after executing.

The _Quit_ case is the last case to execute. When the current case of
the outer Case structure is the _Quit_ case, the While Loop terminates
and the VI stops running.

Note The _Quit_ case is part of the block diagram code, but it has no corresponding state
on the state diagram. This case exists to indicate to the outer While Loop when to stop
the VI. When the conditional terminal on the outer While Loop receives an enumeration
value of _Quit_, the VI stops.

4. Select the Input n case in the outer Case structure.

5. Scroll through the cases in the inner Case structure.

Notice how each case in the inner Case structure corresponds to a
transition in the State Diagram Editor window. There is one case for
each transition in the State Diagram Editor window.

If you have multiple transitions, represented by multiple cases in the
outer Case structure, the inner While Loop and Case structure govern
which case executes next. The inner While Loop executes the block
diagram code until all cases in the inner Case structure complete
execution.

You can add VIs and functions to the inner Case structure to specify
the conditions that must be met before executing another case.

Note The While Loops and Case structures on the block diagram are permanent. You
cannot alter the core functionality of the state machine code. If you want to modify the
code, you must unlock the block diagram from the state diagram. Right-click the border of
the outer While Loop and select Unlock Code From State Diagram from the shortcut
menu. If you unlock the block diagram code, you can no longer use the State Diagram
Editor window to edit it.

LabVIEW State Diagram Toolkit User Guide 10 ni.com

6. Select the Input n case in the outer Case structure and the default case
in the inner Case structure.

By default, the inner Case structure contains only one case, the default
case. The default case represents the default transition arrow
associated with each state on the state diagram. The default transition
arrow indicates the state that executes when no other transition
conditions are true. To reflect this behavior, the default case always
contains a TRUE constant wired to the conditional terminal of the
inner While Loop.

Revisiting the Prime Number Algorithm
The block diagram code provides the structure for the state machine, but
you still need to add the logic that defines the actions that occur in each
state. To build a VI that tests the numbers 1, 2, and 3, remember the first
half of the algorithm defined in the Defining a Prime Number Algorithm
section.

A user picks a number n.
If n = 1, the number is not prime. (quit)
If n = 2 or 3, the number is prime. (quit)
If n > 3, you must keep testing to determine whether the number is divisible
only by the number 1 and itself.

Initializing the Input n Case
The Input n case corresponds to the step where a user enters a number n.
Complete the following steps to initialize the Input n case.

1. On the block diagram, select the Input n case of the outer
Case structure.

2. Right-click the left border of the outer While Loop and select Add
Shift Register from the shortcut menu.

3. Make sure the numeric control labeled n, which you created in the
Creating the Initial State Diagram section, is outside the outer
While Loop.

4. Wire the n terminal to the left shift register terminal on the outer
While Loop.

5. Wire the left shift register terminal to the right border of the outer
Case structure.

Notice how LabVIEW automatically creates a tunnel on the left border
of the outer Case structure.

© National Instruments Corporation 11 LabVIEW State Diagram Toolkit User Guide

6. Wire the tunnel to the right shift register terminal on the outer
While Loop.

Notice how LabVIEW automatically creates a tunnel on the right
border of the outer Case structure.

7. Save the VI.

The Input n case on the block diagram should look like the block
diagram in Figure 5.

Figure 5. Initializing the Input n Case

Determining If n Is Equal to 1, 2, or 3
After you initialize the outer Case structure, you need to specify the
conditions under which the next three cases execute. These transitions
correspond to the steps that determine whether n is equal to the number
1, 2, or 3.

Complete the following steps to configure the transitions from the Input n
case to the Not Prime, Prime, and Keep Testing cases.

1. Select the Input n case in the outer Case structure.

2. On the block diagram, select the n < = 1 case of the inner
Case structure.

3. Place a Less Or Equal? function inside the n < = 1 case.

LabVIEW State Diagram Toolkit User Guide 12 ni.com

4. Wire the function so it compares the value of the n terminal to the
number 1.

5. Wire the output of the Less Or Equal? function to the conditional
terminal of the inner While Loop.

The conditional terminal of the inner While Loop determines when to
transition to the next state.

6. Select the n < = 3 case of the inner Case structure.

7. Place a Less Or Equal? function in the n < = 3 case.

8. Wire the function so it compares the value of the n terminal to the
number 3.

9. Wire the output of the Less Or Equal? function to the conditional
terminal of the inner While Loop.

The Input n case on the block diagram should look like the block
diagram in Figure 6.

Figure 6. Block Diagram for the Input n Case

© National Instruments Corporation 13 LabVIEW State Diagram Toolkit User Guide

Indicating the Primality of a Number
The Not Prime, Prime, and Keep Testing states are terminal states that
correspond to cases on the block diagram. The _Quit_ case has no
corresponding state on the state diagram. Cases corresponding to terminal
states call the _Quit_ case after they execute. As the name indicates,
the _Quit_ case indicates to the VI when to stop running.

Complete the following steps to set up the Not Prime, Prime, Keep
Testing, and _Quit_ cases.

1. In the outer Case structure, wire the left tunnel to the right tunnel of
the n shift register for the Not Prime, Prime, Keep Testing, and
Quit cases.

Notice how the right tunnel changes to a solid color when you properly
wire all the cases in the outer Case structure.

2. Place a One Button Dialog function in the Not Prime case of the outer
Case structure. Wire a string constant containing the message Not
Prime to the message parameter.

3. Place a One Button Dialog function in the Prime case of the outer Case
structure. Wire a string constant containing the message Prime to the
message parameter.

4. Place a One Button Dialog function in the Keep Testing case of the
outer Case structure. Wire a string constant containing the message
Keep Testing to the message parameter.

5. Save the VI.

The Not Prime, Prime, Keep Testing, and _Quit_ cases on the block
diagram should look like the block diagrams in Figure 7.

LabVIEW State Diagram Toolkit User Guide 14 ni.com

Figure 7. Block Diagram for the Not Prime, Prime, Keep Testing, and _Quit_ Cases

Running the Prime Test VI
Complete the following steps to test the number 1.

1. Display the front panel of the VI.

2. Enter the number 1 in the n numeric control.

3. Run the VI.

Notice how the VI evaluates the number 1 as prime. By definition, the
number 1 is not prime. The VI incorrectly evaluates the number 1
because state diagrams depend on data flow and priorities. To correct
the VI, you need to reorder the transition priorities.

Reordering Transition Priorities
States execute in an “if…then…else if” pattern depending on the number
of transition arrows leaving a state. The order of the transitions are
important because the conditions defined by each transition arrow govern
the execution flow of the state diagram.

© National Instruments Corporation 15 LabVIEW State Diagram Toolkit User Guide

LabVIEW defines the transition order based on the order in which you
create the transition arrows. The last transition arrow created is the first
transition arrow evaluated. When you have multiple transition arrows, the
state associated with the default transition arrow is always the last to
execute.

The state diagram currently evaluates a number as follows because of the
order in which you created the transitions.

If n < = 3, n is prime.
If n < = 1, n is not prime.
If n > 3, you need to keep testing.

While this logic works for the numbers 2 and 3, the VI incorrectly evaluates
1 as prime. Complete the following steps to reorder the transition priorities
so that the VI correctly evaluates the number 1.

1. In the State Diagram Editor window, right-click the Input n state and
select Reorder Transitions from the shortcut menu.

2. Select the n < = 1 transition and drag the selection to the top of the list
in the Set Transition Priorities dialog box.

3. Click the Apply button to apply the changes and close the Set
Transitions Priorities dialog box.

4. Display the front panel and run the VI again using the number 1.

Notice how the VI correctly evaluates the number 1 as not prime.

5. Test the VI using the numbers 2, 3, and 4.

Notice how the VI correctly evaluates the numbers 2 and 3 as prime.
Also notice how the VI indicates that further testing is necessary to
determine the primality of the number 4. The next exercise describes
how to test numbers greater than 3.

6. Save the VI.

Testing Numbers Greater than 3
In the previous exercise, the Prime Test VI notifies the user that if a number
is greater than 3, more testing is necessary. In these exercises, you will add
the logic to the VI to determine whether numbers greater than 3 are prime.

You can complete the exercises in approximately 45 minutes.

Revisiting the Prime Number Algorithm
For n > 3, you need to test whether n is divisible by any factors other than
1 and itself. To perform this test, remember the second half of the algorithm
defined in the Defining a Prime Number Algorithm section.

LabVIEW State Diagram Toolkit User Guide 16 ni.com

Start by setting a divisor d equal to 2.
If n/d is an integer, n is not prime. (quit)
If n/d is not an integer, increase the divisor by 1 setting d = d + 1.
Test until d + 1 = n.
If d + 1 = n, the number n is prime. (quit)

Modifying the State Diagram
To add the logic necessary to determine the primality of a number, you
need more states on the state diagram. Complete the following steps to
modify the state diagram to include more states.

1. In the State Diagram Editor window, right-click the Keep Testing
state and select Make Non-Terminal from the shortcut menu to
change the state back to a non-terminal state.

As a terminal state, the Keep Testing state does nothing more than tell
you that you need to continue testing before determining whether a
number is prime. By making the state non-terminal, you can add more
states to help determine the primality of a number.

2. Double-click the Keep Testing state and change the label to
set d = 2.

Note When naming states and transition arrows, select names that are intuitive. Names
that describe the condition on which that state executes help users understand the state
diagram logic.

3. Create two new states labeled n/d and d = d + 1.

These two states and the set d = 2 state are states that you will
configure to calculate whether a number is divisible by any number
other than 1 and itself.

4. Connect the set d = 2 state to the n/d state with the default arrow
originating from the set d = 2 state.

5. Connect the n/d state to the d = d + 1 state with the default arrow
originating from the n/d state.

6. Connect the d = d + 1 state to the n/d state with the default arrow
originating from the d = d + 1 state.

7. Create a new transition arrow called is integer? that connects the
n/d state to the Not Prime state.

Tip To create a new transition arrow, you can click the state from which you want the
transition to originate, press the <Shift> key, then click the state to which you want to
transition. You also can right-click a non-terminal state and select Create New Transition
from the shortcut menu to create a new transition arrow.

© National Instruments Corporation 17 LabVIEW State Diagram Toolkit User Guide

8. Create a new transition arrow labeled d + 1 = n? that connects the
d = d + 1 state to the Prime state.

The state diagram should look like the state diagram in Figure 8.

Figure 8. State Diagram for Prime Tester VI

When you added the extra states, LabVIEW added cases to the outer Case
structure for each state. LabVIEW also added cases to the inner Case
structure for each transition. In the following exercises, you will configure
the block diagram code to determine whether numbers larger than 3 are
prime.

Creating a Divisor d
To determine whether a number has divisors other than 1 and itself, you
need to create a divisor that represents the divisor d. Complete the
following steps to create a shift register for the divisor d.

1. In the State Diagram Editor window, select the set d = 2 state.

2. Display the block diagram.

Notice how the outer Case structure on the block diagram displays the
state you selected in the State Diagram Editor window.

3. Move the One Button Dialog function and the message Keep Testing
outside of the outer While Loop.

The message is no longer necessary in the set d = 2 case. However, the
message will be useful in a later exercise.

4. Below the n shift register, right-click the left border of the outer While
Loop and select Add Shift Register from the shortcut menu.

The first shift register is for the number you want to test, n. The second
shift register is for the divisor d. These shift registers carry the values
of n and d to the next iteration if n/d is not an integer.

5. Place a numeric constant on the block diagram to the left of the shift
register you just created.

LabVIEW State Diagram Toolkit User Guide 18 ni.com

6. Initialize this shift register by wiring the constant value 0 to the left
terminal of the shift register.

7. Right-click the constant and select Visible Items»Label from the
shortcut menu.

8. Change the label of the constant to d.

9. Save the VI.

Setting the Divisor Equal to 2
To determine whether a number has divisors other than 1 and itself, start
testing with a divisor of 2, the smallest prime number. Complete the
following steps to modify the set d = 2 case.

1. Create a constant value 2 inside the set d = 2 case and wire the
constant to the right terminal of the d shift register.

2. Create an indicator between the outer Case structure and the outer
While Loop that displays the current value of the d shift register.

Tip Create more working space on the block diagram by pressing the <Ctrl> key and
using the Positioning tool to drag out a rectangle where you want more space.

The set d = 2 case on the block diagram should look like the block
diagram in Figure 9.

Figure 9. Block Diagram for the set d = 2 Case

© National Instruments Corporation 19 LabVIEW State Diagram Toolkit User Guide

3. Select the Input n case of the outer Case structure.

4. Wire the left terminal of the d shift register to the left border of the
outer Case structure.

5. In the outer Case structure, wire the left tunnel to the right tunnel of the
d shift register.

6. For the Not Prime, Prime, and _Quit_ cases, also wire the left tunnel
to the right tunnel of the d shift register.

7. Save the VI.

Dividing n by d
In the n/d state, you want to test whether the number n divided by d is an
integer. If n is divisible by any number between 1 and itself, the number is
not prime. Complete the following steps to configure the n/d state.

1. In the State Diagram Editor window, select the n/d state and then the
is integer? transition arrow.

Notice how the outer and inner Case structures on the block diagram
adjust according to the state and transition arrows you selected in the
State Diagram Editor window.

Tip If you have many states and transitions, selecting a specific state and transition arrow
in the State Diagram Editor window helps you display the correct cases you want to edit
on the block diagram. Instead of scrolling through multiple cases in the outer and inner
Case structures to locate the state and transition, the State Diagram Toolkit automatically
locates the cases for you.

2. Wire the left tunnel to the right tunnel for the n and d shift registers.

3. Place a Quotient & Remainder function on the block diagram inside
the n/d case of the outer Case structure.

4. Wire the left shift register terminal of the n shift register to the x input
of the Quotient & Remainder function.

5. Wire the left shift register terminal of the d shift register to the y input
of the Quotient & Remainder function.

6. Place an Equal To 0? function inside the is integer? case of the inner
Case structure.

The is integer? case specifies what action to take if n/d is an integer.
If the Equal To 0? function returns TRUE, this transition case executes
the Not Prime case.

7. Wire the remainder output of the Quotient & Remainder function to the
input of the Equal To 0? function.

8. Wire the output of the Equal To 0? function to the conditional terminal
of the inner While Loop.

LabVIEW State Diagram Toolkit User Guide 20 ni.com

9. Move the One Button Dialog function and the string constant
containing the message Keep Testing inside the is integer? case.

The n/d case on the block diagram should look like the block diagram
in Figure 10.

Figure 10. Block Diagram for n/d Case

Increasing the Divisor by 1
If n/d is not an integer, you must increase the divisor by 1 and retest n/d.
Complete the following steps to configure the d = d + 1 state.

1. In the State Diagram Editor window, select the d = d + 1 state and
then select the d + 1 = n? transition arrow.

2. On the block diagram, wire the left tunnel to the right tunnel of the
n shift register.

3. Place an Increment function on the block diagram inside the d = d + 1
case of the outer Case structure.

4. Wire the left tunnel of the d shift register to the input of the Increment
function.

5. Wire the output of the Increment function to the right tunnel of the
d shift register.

6. Place an Equal? function inside the d + 1 = n? case of the inner
Case structure.

© National Instruments Corporation 21 LabVIEW State Diagram Toolkit User Guide

7. Wire the function so it compares whether the value of the output of the
Increment function is equal to the value of the n shift register.

8. Wire the output of the Equal? function to the conditional terminal of
the inner While Loop.

9. Save the VI.

The d = d + 1 case on the block diagram should look like the block
diagram in Figure 11.

Figure 11. Block Diagram for the d = d + 1 Case

Running the Prime Test VI
You now can run the Prime Test VI to test any number. Complete the
following steps to run the VI and observe how the state diagram executes.

1. Display the block diagram and the State Diagram Editor window.

2. In the State Diagram Editor window, click the Highlight Execution
button, shown at left.

The Highlight Execution button displays an animation of the state
diagram execution when you run the VI. If the Highlight Execution
button appears yellow, execution highlighting is enabled.

LabVIEW State Diagram Toolkit User Guide 22 ni.com

Note When you turn on execution highlighting in the State Diagram Editor window,
LabVIEW automatically places a probe on the wire connecting the enumeration constant
to the outer Case structure, shown in Figure 12. The probe transfers the data on the wire
from the block diagram to the State Diagram Editor window. Using this information, the
state diagram highlights the state currently executing as the VI runs.

Figure 12. Adding a Probe for Execution Highlighting

3. Display the front panel and State Diagram Editor window.

4. Enter the number 4 in the n numeric control.

5. Run the VI. Observe the flow of the state diagram as illustrated by
execution highlighting.

Notice the divisor displayed in the d indicator. If the number n is
greater than 3, the VI cannot automatically determine the primality of
the number. Therefore, the Keep Testing message appears on the
screen. When you click the OK button, the VI continues testing.

In the State Diagram Editor window, notice how for the number 4,
LabVIEW highlights the following states:

Input n
set d = 2
n/d
Not Prime

6. Enter the number 5 in the n numeric control.

7. Run the VI.

Again, notice the divisor displayed in the d indicator. For numbers
greater than 3, when you click the OK button, the divisor d increases
by 1 and the VI continues testing.

© National Instruments Corporation 23 LabVIEW State Diagram Toolkit User Guide

In the State Diagram Editor window, notice how for the number 5,
LabVIEW highlights the following states:

Input n
set d = 2
n/d
d = d + 1
n/d
d = d + 1
n/d
d = d + 1
n/d
Prime

By using execution highlighting, you can observe how the state
diagram can simplify a complex application.

8. Save the VI.

Calling a State Machine VI as a SubVI
After you build a state machine in LabVIEW using the State Diagram
Toolkit, you can convert the VI into a subVI. Instead of continuously
running the VI until it terminates, the VI executes one state and then stops.
To convert a state machine VI into a subVI, in the State Diagram Editor
window, select Edit»Execution Mode»Single Step (Callable as SubVI).

The block diagram code automatically updates to contain a Case structure,
shown at left, with a First Call? function wired to the selector terminal.
The First Call? function returns TRUE only the first time you call the VI.
The VI executes the case specified by the enumeration constant in the Case
structure and then terminates. By default, the value of the enumeration
constant in the True case is always the initial state of the state machine.

After a case executes, the VI does not run again until called. Each
subsequent time you call the VI, the VI remembers which state executed the
last time you called the VI and then executes the next state in the state
machine.

Where to Go from Here
In addition to this user guide, the State Diagram Toolkit provides
example VIs that you can explore to learn more about creating state
diagrams in LabVIEW.

Refer to the examples\statediagram directory for examples of VIs
using the state diagram architecture.

	LabVIEW State Diagram Toolkit User Guide
	Contents
	Introduction to State Machines
	Figure 1. State Diagram Editor Window

	Testing the Primality of a Number
	Defining a Prime Number Algorithm
	Testing the Numbers 1, 2, and 3
	Creating the Initial State Diagram
	Creating New States
	Creating Terminal States
	Figure 2. Arranging the States
	Creating Additional Transitions
	Figure 3. State Diagram for the Prime Test VI
	Exploring the Block Diagram
	Figure 4. Block Diagram Code for the Initial State
	Revisiting the Prime Number Algorithm
	Initializing the Input n Case
	Figure 5. Initializing the Input n Case
	Determining If n Is Equal to 1, 2, or 3
	Figure 6. Block Diagram for the Input n Case
	Indicating the Primality of a Number
	Figure 7. Block Diagram for the Not Prime, Prime, Keep Testing, and _Quit_ Cases
	Running the Prime Test VI
	Reordering Transition Priorities

	Testing Numbers Greater than 3
	Revisiting the Prime Number Algorithm
	Modifying the State Diagram
	Figure 8. State Diagram for Prime Tester VI
	Creating a Divisor d
	Setting the Divisor Equal to 2
	Figure 9. Block Diagram for the set d = 2 Case
	Dividing n by d
	Figure 10. Block Diagram for n/d Case
	Increasing the Divisor by 1
	Figure 11. Block Diagram for the d = d + 1 Case
	Running the Prime Test VI
	Figure 12. Adding a Probe for Execution Highlighting

	Calling a State Machine VI as a SubVI

	Where to Go from Here

